
2016 IEEE International Symposium on Information Theory 

Data Extraction via Histogram and Arithmetic 
Mean Queries: Fundamental Limits and Algorithms 

I-Hsiang Wang, Shao-Lun Huang, Kuan-Yun Lee, and Kwang-Cheng Chen 
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 

Email: {ihwang.huangntu.b01901024.ckc}@ntu.edu.tw 

Abstract-The problems of extracting information from a 
data set via histogram queries or arithmetic mean queries are 
considered. We first show that the fundamental limit on the 
number of histogram queries, m, so that the entire data set of size 
n can be extracted losslessly, is m = 8(n/logn), sub-linear in 
the size of the data set. For proving the lower bound (converse), 
we use standard arguments based on simple counting. For 
proving the upper bound (achievability), we proposed two query 
mechanisms. The first mechanism is random sampling, where in 
each query, the items to be included in the queried sub set are 
uniformly randomly selected. With random sampling, it is shown 
that the entire data set can be extracted with vanishing error 
probability using ll(n/logn) queries. The second one is a non­
adaptive deterministic algorithm. With this algorithm, it is shown 
that the entire data set can be extracted exactly (no error) using 
II (n j log n) queries. We then extend the results to arithmetic 
mean queries, and show that for data sets taking values in a 
real-valued finite arithmetic progression, the fundamental limit 
on the number of arithmetic mean queries to extract the entire 
data set is also 8(njlogn). 

I. INTRODUCTTON 

Efficiently and effectively acquiring information trom large­
scale data sets is an important step in analyzing a huge amount 
of data. In general, a common process for data analysts to 
acquire data from a data set can be stated as folIows: 

• A data analyst sends queries to a data curator, who is in 
charge of releasing data. 

• The data curator responds to the queries with answers 
based on the data in the data set as weil as the queries. 

In this process, the type of queries that the data analysts can 
send typically depends on the applications. For the sake of 
privacy protection, the data in many systems are released in 
the form of certain statistics such as histograms or averages. 
For example, in a medical system, we can often only acquire 
the statistics of patients about certain diseases, but not the 
information about individual patients. 

In this paper, our goal is to understand how many and what 
kinds of queries are required to extract all entries in the data 
set. Such information is particularly useful for data analysts, 
since the total cost of data extraction often grows with the 
number of queries sent to the data curator. It is also useful for 
the data curator to protect the data set trom query-aggregation 
attacks. Therefore, the fundamental limit on the necessary 
number of queries and the corresponding querying algorithms 
are important to both data analysts and data curators. 

Specifically, we investigate the fundamental limit on the 
number of queries, m, required to extract the entire n-item 

data set "losslessly", when the data curator responds honestly 
(without noise). The data set consists of n items labeled trom 
1 to n, and each item takes the value in a finite alphabet A of 
size d, a collection of abstract symbols or real numbers. For 
simplicity, in this conference paper we assume d is fixed and 
does not scale with n. Two kinds of queries are considered: 

• Histogram Queries: the analyst queries a subset of items 
in the data set, and the data curator releases the histogram 
of the values of these queried items. 

• Arithmetic Mean Queries: the analyst queries a sub set of 
items in the (real-valued) data set, and the data curator 
releases the arithmetic mean of the values of these items. 

Note that a trivial upper bound on m is n, since one 
can query each item one by one and extract the entire data 
set. The question is, can we leverage histogram/arithmetic 
mean queries of larger subsets to significantly reduce the 
necessary number of queries? The answer turns out to be 
yes. We prove that for both histogram queries with arbitrary 
alphabet A and arithmetic mean queries with A being a real­
valued finite arithmetic progression, the fundamental limit is 
m = 8( n/ log n), sub-linear in the size of the data set. 

For the impossibility part (lower bound on query complex­
ity m), we use simple counting arguments to show that if 
m = o( n / log n), lossless extraction is impossible. For the 
achievability part, two kinds of mechanisms to choose the 
queried sub sets are considered: 

• Deterministic Sampling: The queried subsets are de­
termined beforehand. For deterministic sampling, it is 
required to extract the entire data set exactly no matter 
what the values of the data sets are. 

• Random Sampling: In each query, the items to be included 
in the queried subset are randomly chosen. The extraction 
criterion is to have vanishing error probability as n -+ 00, 

no matter what the values of the data sets are. 

Note that both mechanisms are non-adaptive: a queried subset 
does not depend on the responses to the previous queries. 

For deterministic sampling, we first propose an explicit non­
adaptive algorithm and show that it extracts the entire data set 
exactly (no error) using f2(n/logn) histogram queries. Then 
for arithmetic me an queries, we focus on the setting where 
the alphabet A is a real-valued finite arithmetic progression. 
Using the proposed deterministic data extraction algorithm for 
histogram queries as the building block, another non-adaptive 
extraction algorithm for arithmetic mean queries is proposed, 

978-1-5090-1806-2/16/$31.00 ©2016 IEEE 1386 



2016 IEEE International Symposium on Information Theory 

and it is shown that with r1(n/logn) queries, the entire data 
set can be extracted without any error. For random sampling, 
we focus on histogram queries and analyze the probability 
of error under uniform i.i.d. random sampling. It is shown 
that the entire data set can be extracted with vanishing error 
probability using r1(n/ logn) queries. 

11. PROBLEM FORMULATION 

We shall cast the data extraction problem with n items and 
rn queries as a linear inverse problem: 

Solving n unknowns with rn linear equations. 

Notations: Let [NI: N 2 j ~ {NI, NI + 1, ... , N 2 } for integers 
NI < N 2 , and [Nj ~ {1, 2, ... , N} for N E N. Let (-)T 
denote the transpose operation. 

A. Data Set 

Consider a data set with n items, labeled trom 1 to n. Each 
item has a piece of data taking values in a finite alphabet 
A = {al, a2, ... , ad}, and lAI = d. We model the data set as 
a matrix X ~ [xi x~ x~r, with n rows Xl, ... ,Xn . 

For ditlerent query models, the values of row vectors x;'s are 
defined ditlerently. 

1) Histogram Query: For the histogram-query problem, for 
all i E [n], Xi = ez if and only if the i-th item in the data 
set takes value at az. Here ez denotes the l-th unit row vector 
of the d-dimensional EucIidean space, I = 1, ... , d. In other 
words, the value of Xi indicates which symbol az E A, I E [d], 
the i-th item takes. The data set is viewed as an n x d matrix 
XE {O, l}nxd, where in each column there is only one non­
zero entry. Since the rows are limited to the standard basis 
Bd ~ {ez 11 E [d]}, we denote the range of X by B~X 1. 

2) Arithmetic Mean Query: For the arithmetic-mean-query 
problem, we assurne that A c IR and the d (ordered) elements 
a1 .-::: a2 .-::: ... .-::: ad form an arithmetic progression. In this 
case, Xi is simply the value of the i-th item of the data set 
and hence the range of the data-set matrix X is An xl. 

B. Queries and Responses 

Consider rn queries and each query is a subset of labels 
in [nj. Let Si denote the queried subset in the i-th query. We 
shall use an rn x n query matrix Q E {O, 1} mXn to collectively 
represent the rn queries. In particular, (Q) i,j = 1 if and only 
if the j-th item is included in the i-th queried subset. In other 
words, (Q)i,j = • {j ES;}. Hence, thei-th row qi represents 
the queried subset in the i-th query. 

The response to the queries in both scenarios can then be 
represented as the multiplication of query matrix and the data­
set matrix. Let us denote the responses to the rn queries by rn 

row vectors Y1, ... , Ym, and the corresponding rn-row matrix 
by y ~ [Yi y~r· 

I) Histogram Query: For the i-th histogram query, 

[ ( # of 01) 
Yi = in Sj ( # of 02) 

mS· J 
( #Of O.d)] mS· . 

J 

It is not hard to see that Yi = LjESi Xj and hence 

Y = QX, Y E [0 : njmXd . 

2) Arithmetic Mean Query: For arithmetic mean query, 
since the data analyst who sends out the query knows the 
queried subset and hence the number of items, the response 
is equivalent to the arithmetic sumo Hence, if Y i E IR 
denotes the arithmetic sum of the i-th queried subset Si, it 
is straightforward to see that 

Y = QX, Y E IRmx1 . 

C. Data Extraction as a Linear Inverse Problem 

Let us summarize the above formulation as follows. 

1) Data-set matrix: X E B~ x 1 in the histogram-query case, 
and X E Anx1 in the arithmetic-mean-query case. 

2) Query matrix: Q E {0,1}mxn, (Q)i,j = • {j E Si}, 
where Si denotes the queried sub set in the i-th query. 

3) Response matrix: Y = QX, where Y E [0: njmXd 
in the histogram-query case and Y E IRmx 1 in the 
arithmetic-mean-query case. 

Now, the data extraction problem for both cases is to 
reconstruct the data-set matrix X based on the response matrix 
Y and the query matrix Q. In other words, it is equivalent 
to solving n unknowns with rn linear equations, i.e., a linear 
inverse problem. In general, it requires rn = n linear equations 
to solve n unknowns. However, as we will show in our main 
results, by making use of the structure of the data-set matrix 
X, even though the query matrix Q is lirnited, we are able to 
solve n unknowns with sub-Iinear-in-n linear equations. 

D. Querying Mechanisms and Criteria of Data Extraction 

The goal is to recover the data-set matrix X losslessly. Two 
kinds of mechanisms and recovery criteria are considered. 

1) Deterministic Sampling: The query matrix Q is deter­
ministic and set beforehand. The criterion of lossless data 
extraction is to recover X exactIy. Hence, it is required that 

(1) 

Definition 2.1 (Recoverability): Suppose a query matrix Q E 
{O,l}mxn satisfies (1) for all data-set matrix X, then it is 
called (rn, n)-recoverable. 

2) Random Sampling: Here the query matrix Q is randorn. 
To specify the criterion of lossless data extraction under 
random sampling, let us define probability of error associated 
with the randomly generated Q as follows. 

Definition 2.2 (Probability of Error): For a data-set matrix 
X, its probability of error under query matrix Q is defined as 

Pe (X; Q) ~ IP'Q { 3 X cl X such that QX = QX} . 

The subscript "(.)Q" is to emphasize that the probability is 
induced by the randomly generated query matrix Q. 

Given a sequence of randomly generated query matrices 
{Qm,n} (rn grows with n), lossless data extraction is to ensure 
vanishing probability of error as n -+ 00: 

lim max Pe (X; Q(m,nl ) = 0. 
n----+ooXEXnxl 

(2) 

Here X = Bd and A for histogram-query and arithmetic­
mean-query settings respectively. 
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III. MATN RESULTS 

First we give a lemma on the impossibility part. 
Lemma 3.1 (1mpossibility Results): For any sequence of 

query matrices {Q(m,n)}, if m = o(n/logn), then lossless 
extraction is impossible for the histogram-query setting and 
the arithmetic-mean-query setting. 

Prao!, Note that for both deterministic sampling and 
random sampling, the respective lossless extraction criteria (1) 
and (2) will fail as long as the total number of possible Y is 
strictly sm aller than the total number of possible X. 

For histogram queries, the total number of possible X is dn , 

'bl Y' ( + 1)(d-l)m while the total number of POSSI e lS at most n . 
For arithmetic mean queries, the total number of possible 
X is dn , while the total number of possible Y is at most 
(n(d - 1) + l)m. Hence, 

(n + 1)(d-l)m < dn {==} 

(n(d - 1) + Ir < dn {==} 

(~) n . m < d-l log(n+l) , 
nlogd 

m< log(n(d-l)+l)' 

Since d is a constant with respect to n, proof complete. • 
Next, we summarize the achievability results in the follow­

ing two theorems. 
Theorem 3.1 (Achievability of Deterministic Sampling): We 

propose an explicit construction of query matrix Q such 
that the exact data extraction criterion (1) is satisfied with 
m = 8 (ni log n) histogram queries. An extension of this con­
struction attains exact data extraction with m = 8 (ni log n) 
arithmetic mean queries if the alphabet A forms a real-valued 
arithmetic progression. 

Prao!, See Section IV for the construction. The idea is 
that, by leveraging the structure of the domain of solution, one 
can reduce the number of linear equations needed. • 

Theorem 3.2 (Achievability of Random Sampling): In the 
histogram-query setting, if one generates the query matrix 
Q(m,n) according to the following distribution: 

(Q(m,n)),i,!.:5l'Ber(1/2), \/iE[m], \/jE[n]. 
2,) 

Then, m = [2 (ni log n) implies that the lossless extraction 
criterion (2) is satisfied. 

Prao!, The proof involves detailed analysis on the proba­
bility of error. We find upper bounds on Pe (X; Q(m,n)) from 
first principles. Details are given in Seetion V. • 

IV. DETERMTNTSTTC SAMPLTNG 

Let us first illustrate the basic idea in OUf construction with 
a simple example in the histogram-query setting. 

Example 4.1 (Extract 4 Items with 3 Histogram Queries): 
Consider the following query matrix 

Q(") ~ [~ ~ : ~l 
The key is to apply the following row operation on Q (3,4): 

Row 1 - Row 2 + Row 3 = [0 2 0 1]. 

which can be translated to the same row operation on the 
response matrix Y, and get a row Y' = 2X2 + x4. Since each 
row of X is a unit vector, we can uniquely determine x2 and 
x4 from y. Then we can determine Xl and X3 from YI and 
Y2 (the first and the second rows of Y) successively. 

In the above example, even though the construction of the 
query matrix Q is quite limited (entries of Q are constrained in 
{O, I}), we are able to save 1 equation in solving 4 unknowns, 
by harnessing the structure of the domain of solution (each row 
of X is a unit vector). 

A. Praof of Theorem 3.1 for Histogram Queries 

In the following, let us focus on the histogram-query setting 
and propose a recursive way to construct larger query matrices 
when n grows. Suppose we have a construction Q(m,n) that 
is (m, n )-recoverable, and consider the construction: 

r Q(mn) 
Q(m,n) Omxn 

om1 Q(3m,3n+m) ~ Q(m,n) 
Omxn Q(m,n) Om 

Omxn Q(m,n) Q(m,n) Im 

Lemma 4.1: If Q(m,n) is (m,n)-recoverable, then the con­
structed Q(3m,3n+m) is (3m, 3n + m)-recoverable. 

Prao!, Consider the following elementary row operations 
on Q(3m,3n+m) (drop the superscript in the following for simplicity): 

Q[LJ,.m] - Q[(m+I).j.2m] + Q[(2m+I).j.3m] 

= [Omxn 2Q(m,n) Omxn Im] 
(3) 

Here for a matrix M, we use the notation M[i.j.j] to denote 
the sub-matrix formed by the i-th to the j-th rows of M. 

Applying the same row operations on the corresponding 
response matrix Y, we get 

Y' = [Omxn 2Q(m,n) Omxn Im] X. 

Hence we can recover X[(3n+I).j.(3n+m)] and 

Q(m,n) X [l.j.n] , Q(m,n)X[(n+I).j.2n], Q(m,n)X[(2n+I).j.3n]' 

By the original assumption that Q(m,n) is (m, n)-recoverable, 

we can also recover X[l.j.n], X[(n+I).j.2n], and X[(2n+1).j.3n]' • 
We are now ready to prove Theorem 3.1 for the histogram­

query setting. Using Lemma 4.1, if we start at (m, n) = (0,1) 
being the O-th iteration, at the t-th iteration we shall have 
mt = 3t and nt = 3nt-1 + 3t- 1 = 9nt-2 + 3t- 1 + 3t- 1 = 

... = 3t + t3t - 1 = (t + 3) 3t- l . Hence, we have 

r mlog,~ n - r 3'(iog,l(t+3)+t-l) - 3 
t~~ ----::::- - t~~ (t+3)3' 1 - •. 

We have shown that for n = (t + 3) 3t- l , t E N, the 
construction yields m = 8 (ni log n). For n cl (t + 3)3t-1 
for all t E N, pick t E N such that nt < n < nt+l where 
nt = (t + 3)3t- l . Since n < nt+1, we are able to extract the 
data set by using at most mt+l = 3mt histogram queries, by 
first inserting "dummy" items to enlarge the original n-item 
data set to a nt+ I -element data set, and then recovering them 
using Q(mt +1 ,nt +,). 

1388 



2016 IEEE International Symposium on Information Theory 

Note that 3m, log3 n,+, < 3m, log3 n < 3m, log3 n, and 
ni~+l - n - nr 

r 3m, log3 n,+, - r 3x3'(lOg3(t+4)+t) - 3 
t~~ n,+, - t~~ (tH)3 t -, 

lim 3mtlog,lnt = lim 3x3t(log,,(t~3)/t-l) = 9. 
t-+oo n, t-+oo (t+3)3 

Therefore, oUf construction yields m = 8 (n/logn). 

B. Praof of Theorem 3.1 for Arithmetic Mean Queries 

Recall that the alphabet .A = {al"", ad} forms a real­
valued arithmetic progression al < ... < ad. Since the re­
sponse to a queried sub set is equivalent to the arithmetic sum, 
we can ass urne without loss of generality that .A = [0 : d - 1]. 

Note that for d = 2, the data extraction problems for both 
the histogram-query and the arithmetic-mean-query settings 
are identical. Hence, we can use the scheme in Section IV-A 
directly. In the following, we first prove a lemma about the 
achievability for d = 2h , h E N. Then, for general d, we 
consider an enlarged alphabet .A ~ [0 : 2h - 1] , h = llog2 dl, 
and use the scheme developed in the lemma for d = 2h . 

Lemma 4.2: Let the alphabet .A = [0: 2h - 1] for a fixed 
h E N, not scaling with n. If m = 8 (n/logn), then the 
data-set matrix X can be extracted exactly (no error). 

Prao!" The proof is based on induction. First, for h = 1, 
by the result in Section IV-A, the claim is true. 

Suppose for all h :::; TI E N the claim is true. Now, for 
h = TI + 1, we make a first pass to reduce the original data 
extraction problem to some sub-problems with a alphabet of 
smaller size (h = Tl). The procedure is described as folIows: 

1) Pick t E N such that nt < n :::; nt+l, nt = (t + 3)3t- 1. 
2) Append zeros to X to generate X E .A nt Xl. 
3) Calculate Y ~ Q(m'+l,n'+l)X. 

We then apply the row operation in (3) on Y to get 

-I [ 
Y = Omtxnt 

-I 
From Y , we are able to learn the parity of the last mt 
entries of X, that is, X[(3nt+l)H3nt+mt)]' Hence after the 
first pass, the range of each element in the column vector 
X[(3n,+1)+(3n,+m,)] is reduced from a size-2'7+1 arithmetic 
progression to a size-2'7 arithmetic progression. 

The second pass is to extract X[(3n,+1)H3n,+m,)] exactly 
by using the method for a size-2'7 arithmetic progression. By 
the induction hypo thesis, this can be done with 8 (mt / log mt) 

queries. After the second pass, we can obtain Q(m, ,n')X[ltn,j , 
Q (mt,n,)x and Q(mt ,nt)X Agal'n [(n,+ 1)+2n,], [(2n,+ 1)+3n,]' , 
apply the row operation in (3) on them, and similar to the 
above discussion, we can then figure out the parity of the 

last mt-l entries of X[ltnt]' X[(nt+1)+2nt]' and X[( 2nt+1)+3nt] 
respectively. 

Then, again by the induction hypo thesis, we can extract 
these 3mt-l = mt = 3t entries with 8 (mt! log mt) queries. 
Continuing with the procedure repeatedly t times, we can 
extract the entire X with 

queries. Note that n = 8 (t3 t ), and hence similar to the 
arguments in Section IV-A, m = 8 (n / log n) for h = Tl + 1. 

The proof is complete by induction. • 

V. RANDOM SAMPLING 

Let us first provide a simple upper bound on the probability 
of error when the query matrix Q is genera ted according to 

(Q)i ,j i~ Ber (q), Vi E [m], V j E [n]. 

With a slight abuse of notation, let x denote the first column 
of X. Then, Pe (X; Q) is upper bounded by 

lP' { :..J x E {O, 1} nX 1 , X cl x such that Qx = Qx} 

= lP' { Ux# {Qx = Qx} } :::; 2.:x# lP' {Qx = Qx} (4) 

= 2.:x# (lP'{qx = qx}r· (5) 

Here (4) is due to union bound, and (5) is due to the fact the 
rows of Q, {ql, ... , qm}, are i.i.d. distributed as q. 

To get a handle on (5), we introduce couples of notations 
below. Let k1 and k 2 denote the number of l's in x (the 
first c~lumn of X) and x respecti~elr, Fu~thermore, let TI ~ 
{J I (x) j = 0, (x) j = 1 }, and 72 = l J I (x) j = 1, (x) j = 0 }. 

Let tl ~ ITII ,t2 ~ 1721· Note that tl - t2 = k1 - k2. 
Let the queried subset correspond to the row vector q be 

5. Note that the confusion event {qx = qx} happens if and 
only if 15 n TI 1 = 15 n 721, that is, the # of items sampled in 
TI is equal to the # of items sampled in 72. Hence, denoting 
this number by s, we can write down lP' {qx = qx} explicitly: 

= t G) C~R)q2s (1 - q)H2t-28 . (I' ~ Ik1 - k2 1) 
8=0 

Since this expression only depends on (k1, k2 , t, q), we denote 
it by P(kl,k2 ,t,q) ~ lP'{qx=qx}. Let k ~ min(k1,k2) and 
note that tl = k1 - k + t, t2 = k2 - k + t. Therefore, 

where t ~ min {k1, k2 , n - k1, n - k2 } is the maximum value 
that t = min (h, t2) can take. 

S -p(n.m,q) (X) Let us denote the above upper bound ( ) by e' 

to stress its dependency on (n, m, q). We focus on the case 
q = 1/2, where P(k

"
k 2,t,q) is greatly simplified: 

Lemma 5.1: For t 21, P(k" k 2 ,t,1/2) :::; P(k1 ,k 2 ,t,1/2)' where 

I' :::; 1 

otherwise 
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For t = 0, P(k1 ,k2 ,O,1/2) = 2-e. 
With Lemma 5.1, we now have 

p~n,m,1/2) (X) :::: f: (kk") G;~~) (~)em 
k2cjck 1 ,k2=O 

(6) 

(7) 

The following lemma gives abound on (7). 
Lemma 5.2: When n is large enough, :.3 Cl, C2 > 0 such that, 

Proofs of Lemma 5.1 and 5.2 are in Appendix of [1]. 
To complete the proof of Theorem 3.2, by Lemma 5.2, 

(7) :::: ne(-8(logn)m+8(n)) = e(-8(logn)m+8(n)) --+ 0 

as n --+ 00 if m = 8 (Io~n)' For the other part (6), 

k 1 -1 n 
(6) = '\' (kl)2-Ckl-k2)m + '\' (n-k 1 )2-Ck2-kl)m 

~ k 2 ~ k2-k1 
k 2=O k 2 =k1 +1 

= (1 + 2-m )k1 - 1 + (1 + 2-m t-k1 - 1 

:::: 2 {(I + 2-m t - I}. 

If m = 8 (-I n ), lim (1 + 2- m t:::: lim (1 + 2-v'n)n. 
og n n----+oo n----+oo 

Since lim n log (1 + 2-v'n) = 0 (simple caIculation; details 
n--+oo 

in Appendix of [1]), we have lim (1 + 2-v'n)n = 1, and 
n--+oo 

hence (6) --+ 0 as n --+ 00. Proof complete. 

VI. DISCUSSIONS AND RELATED WORKS 

In this work, we establish the fundamental limit on the 
number of queries required to achieve lossless data extraction, 
in both the histogram-query setting and the arithmetic-mean­
query setting. It turns out that the number of queries required 
is sub-linear in the size of the data set, when the data curator 
responds honestly and the alphabet size is fixed with respect 
to the data set size. When the alphabet size d grows up with 
the data set size n, both the converse and the achievability part 
shall be improved. This direction is left as future work. 

Our resuIt has applications beyond the analyst-curator 
framework described above. To name a few: 

• Crowd sensing: In this problem, one would like to learn 
the opinions of a crowd by polling multiple subsets. The 
responses are recorded anonymously, and hence only the 
histogram of the opinions is collected. 

• Sensor network: Consider a sensor network with a cen­
tralized server collecting data from multiple data fusion 
centers. Each fusion center, in charge of a sub set of 
sensors, only reports the histogram or the arithmetic mean 
of sensors' data, due to various concerns such as privacy. 

In these application scenarios, it is natural to address further 
constraints on the query matrix. In particular, the number of 
people/sensors in each poll/measurement may be constrained 
from above or below, corresponding to constraint on the 

number of l's in each row of the query matrix. The number 
of times that one person/sensor is polled/measured can also be 
limited, corresponding to constraint on the number of l's in 
each column. It turns out not difficult to address these sparsity 
constraints on the query matrix, and it is an onoging work. 

Related Works 

Our problem can be viewed as generalization of group 
testing [2] if the alphabet is binary and the data set is assumed 
to be sparse. In group testing, the response is the "OR" 
of the sampled bits, while in our setting, the response is 
the "SUM" (in IR) of the sampled bits. Fixing the number 
of 1 's, arecent line of works have taken an information 
theoretic approach towards group testing problems [3]-[7]. 
The information theoretic and algorithmic investigation of the 
sparse recovery problem via histogram queries is an ongoing 
work, where we not only extend the framework in [3]-[7] to 
investigate the fundamental limit of random sampling but also 
propose an adaptive algorithm to achieve exact extraction. 

In [8] the sum query model is also investigated for the binary 
alphabet, where the data curator perturbs the response to 
ensure privacy. A Poly (n) attack algorithm is proposed, which 
reconstructs the size-n data set as long as the perturbation 
is 0 ( fo). Their work is different from ours in two aspects. 
First, [8] is mainly interested in whether the computational 
complexity of data extraction is polynomial or not, while our 
work is focused on the fundamental limit of the number of 
queries. Second, [8] allows perturbation in the response, while 
in our work the data curator is honest. A future direction is to 
investigate the fundamental trade-off between the amount of 
perturbation and the number of queries required. 
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